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The purpose of the paper is to investigate weighted L? convergence of Lagrange
interpolation taken at the zeros of Hermite polynomials. It is shown that if a
continuous function satisfies some growth conditions, then the corresponding
Lagrange interpolation process converges in every L? (1 < p < o) provided that
the weight function is chosen in a suitable way.

Let {h,};_, denote the system of orthonormalized Hermite polynomials,
and let x,, > x,, > .+ > x,, be the zeros of Ah,. Then for a given function f
the Lagrange interpolation polynomial L,(/") corresponding to #, is defined
to be the unique algebraic polynomial of degree at most n — 1 which satisfies

L (fixe) =S Cen) (k= 1,200sm).

It is well known that L,(f) can be written in the form

L(fix)= \_ S o) I

where the fundamental polynomials /,, are defined by

o )
o) = s — o~ N T e () T

|8, p.48|. Here 4,, (k=1,2,..,n) denote the Christoffel numbers of the
corresponding Gauss—Jacobi quadrature formula.

The purpose of this paper is to investigate weighted L? convergence
properties of L, (f). For the sake of brevity we do not intend to discuss the
history of this problem. We refer the interested reader to |1, 4, 5]. Our main
result is the following:

* This material is based upon work supported by the Nation Science Foundation under
Grant MCS 78-01868.
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264 PAUL G. NEVAI

THEOREM 1. Let f be a continuous function defined on the real line.
Assume that [ satisfies

lim f(x)(1 +|x]) e ¥ =0. (1)

Then
lim [ (1/() ~ Ly(fix) e "2 }7 dx =0
.
holds for every p > 1.
In order to justify the choice of the weight function in Theorem 1. we will

also prove

THEOREM 2. Let w(20)€& L'(R) and 0 < p < o be given. Suppose that
Jor every continuous function f vanishing outside a finite interval

},‘m J L) = L (f x)F w(x) dx = 0. 2)

Then

> exzr’Z 14
(X [ Ty ] w(x)dx < .

The proofs of these two theorems require several auxiliary results. First we
will prove these results and then we will be able to verify our main theorems.
In the following, every positive constant independent of the variables in
consideration will be denoted by “const.”

LEMMA 3. There exists a number ¢ > O such that for every polvnomial
R, of degree n

L ovn R
‘ R, (x) e ~dx< ConstJ | R, (x)|e " dx.

R —cyn

This lemma was proved by Freud in |3].

LEMMA 4. The inequality
ket

holds for every n=1,2.....
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Proof. Let 0<a< 1. Then the function ¢* is such that all its
derivatives of even order are non-negative. Thus by Markoff’s theorem [8,

p. 378]
\ /1 eax,m<J’ el —1)x? dx:\/l T .
k=1 —a

Setting a =1 —1/(2n + 1) we obtain

n

N et <\ /m(2n + 1) max S/ 2r ),

k=1 k<n

Now the lemma follows from the inequality x;,<2n+1 (k=1,2,.,n)
|8, p. 129].

LEMMA 5. Let 6 € (0,\/2) be given. Then for every polynomial P,, of
degree at most m the inequality

exiﬂ/z
‘\_ _ lkn IPm(xkn)‘

[ Xgnl Co/n 1 + |xkn|

gconst(1+\/§)fo | P ()] 1+| | e ¥ dx. (3)

-0

Proof. First we will show that

‘ .
VPt <comst (1) [ (pugeye

1 Xpn| Cayn J oo (4)
In order to prove (4) let us note that
Xk -1.n
P )< min [P0+ [ |Pp(x) dx.
Xkl nSESXk—1n Y Xketn
Thus, by the Markoff-Stieltjes inequality
Akné ‘ k—l.neirz dt (5)
Xkl

[8, p. 50], we have

N D [P €5

Ixpnl <o/n

X2 2 ~Xk—1,n 2
< Y e NP we

paa
Ixknl <o /1 Xkt

X,
+ N A exin/z‘ P () dx.
|-"kn|<0\/;'- YXkston
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Inequalities (5) and

VT (|xgl <o /)

Xp_n—XpynSconstn”
[2, p. 180] imply that
rk" <c0nste (ka‘ng[gxkil‘")

and
Ayt K const n Ve ¥ (X XX )

for |x,,| < o\/n. Hence

:\_‘ ;tkn ‘Pm(xkn)| ex;n/l

1 X4n| <a\/n

< const UX |P (e P dt +n ¥ ‘1 P (x) e~ dx.  (6)

-

Applying G. Freund’s Markoff-type inequality |3] to the second integral on
the right side of (6), we immediately obtain (4). Now we will prove that
inequality (4) implies (3). Note, that in (3} we can assume without loss of
generality that m > n. Let C > 0 be an arbitrary but fixed number. Suppose
that there exists a polynomial n,, of degree at most m such that

I < const | 7,,(¢) (7)

for itlga\/ﬁ and

[ t 8)
|7, () < cons T (8)
for |1/ < Cy/m. Then by (4) and Lemma 3
2
N ln{Pm(x n)I——
‘anrza\"/; * * 1 + jxknl
;’;, Ciym o,
< const (1 + 7) ( P ) e dx
T =Cypym

with some constant C, > 0. Now, if C is chosen so that C > C,, then we can
apply (8) and the lemma follows. Thus the lemma will be proved if we can
construct a polynomial 7, such that inequalities (7) and (8) hold. Since

2, n<m and the function (1 + {£])7" is exactly of the same size as
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(1 4+ ¢*)7Y% it will be enough to show that for every C > 2 there exist a
polynomial 7, such that

0<M,|m, )<+ ) 2<M,n, (1) 9)

for |t/ < C\/m, where M, and M, are independent of m and r. Since the
second derivative of (1 + t*)~"? in absolute value is bounded by 4, we can
apply Jackon’s theorem |8, p. 6] to conclude that there exists a polynomial
p,, such that

1
(1 + 1) = p,(1)] < const P

for |2| < y/m. Therefore, if m is big enough then

(1432 p ()] <31+ £7) V2
for |¢| < \/m, that is,
Lp IS+ 220,00 (1] <V/m).

Thus, if we put 7, (t) =p,(¢/C), then 7, satisfies (9) since for fixed values of
C the functions (1 + #)~"? and (1 + £*/C*)""? are of the same size.

LEMMA 6. Let a>0 be fixed and let {f,} be a sequence of functions
such that f,(x) = 0 for |x| < a\/n and

ex2/2
£ o
for x€R. Then
lim [ L,/ x) e | dx =0 (10)

Sor every p > 1.

Proof. Applying Schwarz’ inequality we obtain

. I (x
Ln(fn’ -x)2 < ‘\_‘ ffx(xkn) ’1kn }_ k"( )
lxknl>a\/r7 k=1 ’lkn
| ;L)

X
<T ‘\___ A‘kne kn L A
an = k=1 kn
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Hence by Lemma 4 and

N,

7 < const Vet (x€R)
=1 k

=

H

|2, p. 181] the inequality
IL,(f,» x) e~ < const (11)
holds independently of x and n. Now, if p > 2, then (11) implies
o —x%2 . X422
| IL(fyx)e ™ }degconstj [L(frx)e “72Pdx.  (12)

J—u

Using the Gauss—Jacobi quadrature formula we get

} ‘ an(fns x) e 2 !2 dX = }_: fi(xkn) ;Lkn
Yo Il 2an
S 2
< —— N /‘,k”e' kn,
an [:[
Thus by Lemma 4
L0 S, .
J L (fsx)e " dx K const n™ ? (13)

— ¢

which together with (12) proves (10) for p > 2. Now let 1 < p < 2. First we
will show that for every fixed ¢ > 0

.(‘\,'n
lim LSy x) e P dx =0. (14)

”n i
R R

Since p < 2, we have by Holder’s inequality
ovn g
[ L) e ™2 dx

T —cyn

<U

Consequently by (13)

g P2 B
L (S x) e dx] / PEAVEIE

—c V/"

’_[’\ n . ’
' L, (fy Xy e TP dx  const nt! TP
) e
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which implies (14) for 1 < p < 2. Thus (10) will be proved for 1 <p <2 if
we can show that for every fixed ¢ > /2

lim L (frnx)e P dx =0.

"2 x> eyn

Using

Ln<fmx>=\/§h,,<x) N hlk,,h,,vl(xkn)fM

| Xkn| >a\/n X = Xgn
we obtain

hi(x) \<

L,(f,sx)* <constn—"

2 pa—

iknfzr(xkn) }_ iknhflvl(xkn)
k=1

I Xpul >ar/n

for |x|>cy/n since |x,,| <21+ 1 (k=1,2..,n) |8 p.129]. Thus by
Lemma 4
hox) e ™ |7

X

|L,(f,,x)e *"*7 dx < const n”* (Ix] > c\/n).

Integrating this inequality and applying Holder’s inequality we get

[ L e dx
IxI>e/n

x> p

h —x2/2
) e

/4
L const n f .

—
[SAVE ]

2-p)/2
e

pr o @
< const n?* U R (x)e * de [ [ K2/ p=2) dx}
3 ‘/C\/;l-

= const n'! 7P/

which proves our assertion since 1 < p < 2.

LEMMA 7. Let {p,} be a sequences of functions such that ¢,(x)=0 for
Ix| > 3/n and

x2/2
A (15
@) Py (15)
Jor x € R. Then
lim IL,(0,,x)e *"*Pdx=0
n—-o0 ‘X})V"’;

Jor every p > 1.
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Proof. 1t follows from

/n :
L0y x)= AT hx) Y

Xl SCU20 1

that the inequality

L@ x) e 7 dx

X1z
< const n”’* [ N A
ol Y2
ho(xye 2
ML LRGN
vn X

. /Im 7n- l(xkn)

@n(-xkﬂ)
X = Xypp

D
kn ihn~ l(xkn)l {(on(xkn)l}

(16)

holds. First let us examine the expression in brackets. By Lemma S and (15)

we have
N )‘kn thn - l(xkn)l i(pn(xkn)‘
ol SOV 200
ex,fnfz
< N n ‘hn (X n)] I
iy P T
o X2
< const | ] " ,(x)il+' de
Applying the inequality
e () e Cconstn ™ (lx| < V)
|8, p. 201} we obtain
o x4 . NE
t thy e T ‘(x)} ¢ dx < const n~¥? ‘ L dx
L I+ {x] Joym D x

|l

- 1/4
L constn "*logn

Lﬂ)y'f;

so that

N }Lkn ‘ n~\(xkn)l E(Pn(xkn)l <

“’knlﬁﬂll)\ n

2 ox)e "‘gdxw

Tixiz

const n”"*log n.

(17)

2
(1 Hx[)zdx}

(18)
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Now let us estimate the integral on the right side of (16). If p > 2 then

J

vn

oc p

h -x1/2
n(x) e dx < const - pti-on2 (19)

X

since |h,(x)| e ¥ const for xE€ R [8, p.242]. If 1< p<2 then by
Holder’s inequality

e
-

|

v

w P
dxg[J hf,(x)e"‘zde [[ XD gy

= oC Tyn

P 1Q2-p)y2

h,,(x) efxl/l

X

= const n> 734, (20)
We obtain from inequalities (16), (18), (19) and (20) that

n(z“ﬂ)/d (p>2)

i -x1/2
| [La(pn.x)e” "7 dx < const|log n]” WP (1< p <)

ME{ SV

which proves the lemma.

LEMMA 8. Let € > 0 be given. Let |y, be a sequence of functions such
that v, (x) =0 for |x| > \/n and

x2/2

a(x) <e (21

1+ |x|

for x € R, Then

v
lim sup [ |L(w,,x)e *"*|P dx < const &
n-0C -
v *\/ﬂ

Jor every p> 1.

Proof. Let S,(g x) denote the nth partial sum of the Fourier expansion
of some function g in the Hermite polynomials {h,}. Let G be defined by

exz/ 2

+]x]

G(x) = (22)

First we will show that

\/ﬁ l/p
[ i me i as

—yn
—

vn %4
Lconste - sup [J' |S,,([)’G,x)e”‘2/21”dx] , (23)

1Bl <1 -\
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where |-[|, denotes the usual L™ norm. To prove (23) let us introduce a
function g, defined by

8a(x) = Sign[L (W, )] | L, )71 1 5(x) €70 (24)

where [ 7 (x) is the characteristic function of the interval (—\/n, \/n|. Then

o L ,
| Lawyx)e P de={ Ly, x)g,x)e *dx.

Ty

Since L ,(w,.x) is a polynomial of degree less than n, we get

A X N
L e P dx = Ly, x) S,(g e "

—yn

Note that L,(y,,x)S,(g,.x) is a polynomial of degree at most 2n — l.
Thus we can apply the Gauss—Jacobi quadrature formula to obtain

NG

’ _ JLn(Wn’ x) eWXZ/ZJp dX = ,_\_ Ln(Wn’ an) Sn(gn* xkn) ’{'kn-

Toan k=1

Because L ,(y,,x) interpolates y, at x,,, it follows from (21) that the ine-
quality

R n

‘ _ [Ln(u/n’x)ei'r:”:(pge A ;Sn( gn’xknﬂ G(an) ’{kn

\
Vvin Xl <yt

holds where G was defined in (22). Thus by Lemma 5

e R s 5
[ L x)e ™ lpdr<conste | 1S,(8,,¥)|Glx)e “dx. (25)

LRV
Let §, be defined by
ﬁn(x) = Sign Sn(gn’ X)

Then ||, <1 and

[ (S &nm 0| G e P dx= [ g,(x)85,(8,G,x)e ¥ dx.

Consequently by (24)
" 15,08, )] Gy e d

Y=o

RO v, 2
= sign|Ly(w,, )] Loy x) e P [S (8,6, x) e P dx,

VR
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Applying Holder’s inequality we obtain

IAT’ 1S,(8,, %) G(x) e dx

MRS

(p—Up v . i/p
Lvpene a1 w6 e e
71_ *\"’;

This inequality combined with (25) yields (23). In order to complete the
proof of the lemma we must prove that

Vi 1/p
sup [[ |S (BG. x) e~ *"?|F dx] < const (26)
1B <1 Y- \/';

independently of n. Using the Christoffel-Darboux formula [8, p. 43| we get

S, (BG, x) e ¥ = \/gh,,(x) e v fy hu (D0 G e © dt

. X —t
4 —xy2 (* h(8) B(t) (;(1‘)6;rz
_\/_;hnAl(x)e J T —dt,

where the integrals are defined in the sense of Cauchy. Since x in (26) varies
between —/n and \/n, and the Hermite polynomials satisfy (17), inequality
{(26) will be proved if we show that

(f [oo ha(t) B(0) Gy e ©

P
- t| dx<constn?*|B|7, (27)

M &)

for n=1,2..... Let us recall that te Hilbert transform is a bounded operator
on L”if 1 < p < oo |7]. Thus (27) holds if

™ o) B Glx) e 7 de < const =" 2.

that is,

b
dx < const n~ 74, (28)

A0

J

— o

By e
1+ x|

By (17) the inequality

vn hn(X) e—xz/z
J; | 1+ ]x|

vn

P

dx < const n "4

holds. Hence by (19) and (20) inequality (28) is satisfied.
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Proof of Theorem 1. Let ¢ >0 be fixed. They by (1) we can find a
polynomial P such that

12
)

flx) = Px) e

I+ |x!

for x € R. Thus, if # > deg(P), then

Ep

gf ) - Lyfx)e ) d

1p

<= Poe e
+ JJ(A[IL,,(f*P,xMe W20 g "
<e 3| (1 +[x])7"dx N
+ 31 (LS =P ox)e ") dx{lp: (29)

Now consider L,(f— P). Let |, denote the characteristic function of
~3/n, 3v/n|. Then we can decompose f — P into

‘/'_P:(f'_P)ln+(fvp)(l*]n):un+l‘n' (30)

The function u, satisfies the conditions of Lemmas 7 and 8. Hence

lip
L const &.

[ [Latwy. e ) dx

.

lim sup
oo

On the other hand, we can apply Lemma 6 to v, to obtain

e . ip
limsup {| [|L,(z,.x)le | dx} =0

Thus by (30)

[ . Lp

lim sup 3] [[L{f—P.xye *"")dx; <conste.

Using (29) we get

PRt 2 b

limsup §  [[f(x) — Ly(fix)le * IPdx}{ < consté.

Since ¢ > 0 is arbitrary, the theorem follows.
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Proof of Theorem2. Let C,(—2,-1) denote the space of continuous
functions on R with support in [—2, —~1]. Then L,(f) can be considered a
linear functional on Cy(—2,~—1) and by conditions (2) holds for each
[E€ Cy(—2,—1). Hence by Theorem 10.19 of 6, p. 182]

[ L (0P weo dy const max | [/(x)" (31)

for f€ Cy(—2,~1). Now for every n=1,2... let us pick up a function
g, € Cy(—2, —1) such that

max_|g,(x) =1

S2<

and
gn(xkn) = Sign h;:(xkn)'

Then

Ln(gn’x):hn(x) : |h;t(xkn)|7l (x_xkn)rl‘

=2 xpp < 1

It follows from h,(x)=\/2nh, (x) and |h, (x,,)|<constn "* for
2<%, <—1[2,p. 181] that

[ (X)| ~' > const n =1 (=2< X, < 1),
Furthermore, we obtain from

T n
vV2n+1 va+l

12, p. 180] that the number of zeros of h,(x) in |[—2, —] is exactly of order
/n. Hence

<xkn—xk+l.n< (_zgxkné_l)

|L,(g,.x)| >const n"* |h,(x)[ (1 +x)""

whenever x > 0. Thus by (31) we can conclude that the inequality

P

w(x) dx < o (32)

-G

174
n'h(x

A =lim supJ ‘—-—JQ
n-oc

1+ x

-0

holds. Now let us fix M > 0. By Fejér’s asymptotic formula for the Hermite
polynomials |8, p. 200]

nn

n"4h,(x) = const e*”* cos [\/En-;wlx - T] + o(1)
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(0 < x < M) inequality (32) implies

M [ p*t P
lim sup ( [ ¢ } w{x)

neoc g I +x

. P
cos [\/Zn + [x— %] ; dx < const 4.

Hence, if m > p is an even integer then

2

M et P
lim sup ‘ [ ] w(x)|cos(y/4n + Lx)|™ dx < const 4.
oot Sy | + X

Since (cos x}™ is a trigonometric polynomial with non zero constant term.
applying the Riemann—-Lebesgue lemma we obtain

5

M e.\ L P
[ J w(x) dx L const 4.
Jo Ll+x

Letting M — oo the inequality

" e,\ 2 P
l [ } w(x) dx < o
Jo Ll+x

follows. Similar argument can be used to prove

3

-0

e.\ 2 14
| [u} w(x) dx < oo.
s L—x
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