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The purpose of the paper is to investigate weighted L" convergence of Lagrange
interpolation taken at the zeros of Hermite polynomials. It is shown that if a
continuous function satisfies some growth conditions, then the corresponding
Lagrange interpolation process converges in every L" (I <p < 00) provided that
the weight function is chosen in a suitable way.

Let ~hn};::~(} denote the system of orthonormalized Hermite polynomials.
and let x 1n > x 2n > ... > Xnn be the zeros of hn. Then for a given function!
the Lagrange interpolation polynomial Ln(f) corresponding to hn is defined
to be the unique algebraic polynomial of degree at most n - I which satisfies

(k=I.2..... n).

It is well known that Ln(f) can be written in the form

n

Ln(f, x) = \' !(xkn ) lkn(x),
k=1

where the fundamental polynomials lkn are defined by

[8, p. 481. Here Akn (k = 1, 2, ... , n) denote the Christoffel numbers of the
corresponding Gauss-Jacobi quadrature formula.

The purpose of this paper is to investigate weighted LP convergence
properties of Ln(f). For the sake of brevity we do not intend to discuss the
history of this problem. We refer the interested reader to r1,4,5]. Our main
result is the following:

* This material is based upon work supported by the Nation Science Foundation under
Grant MCS 78-01868.
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THEOREM 1. Let J be a continuous Junction defined on the real line.
Assume that J satisfies

Then

lim J(x)(l +Ixll e
x2

/
2 = O.

X---->OO

~oc'

lim I IIJ(x) ~ Ln(f, x)1 e-
x2/2I P dx = 0

" --'x

(I)

holds Jor every p > I.

In order to justify the choice of the weight function in Theorem I, we will
also prove

THEOREM 2. Let w(>O) E: L 1(1R) and 0 < p < 00 be given. Suppose that
Jor every continuous Junction J vanishing outside a finite interval

Then

~lf

lim j . IJ(x) - Ln(f, x)( w(x) dx = O.
n· .. if) -x)

r
x

[I e:2~~1rw(x) dx < 00.

(2 )

The proofs of these two theorems require several auxiliary results. First we
will prove these results and then we will be able to verify our main theorems.
In the following, every positive constant independent of the variables in
consideration will be denoted by "const."

LEMMA 3. There exists a number c > 0 such that Jor every polynomial
R n oj degree n

-
C \/ n

( .."" IRn(x)1 e x
2

dx ~ constL
evn

I Rn(x)1 e- x
: dx.

This lemma was proved by Freud in [3].

LEMMA 4. The inequality

;, Aknexkn ~ eV~(2n+lj
k I

holds Jor every n = 1, 2, ....
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Proof Let 0 <a < 1. Then the function eax2 is such that all its
derivatives of even order are non-negative. Thus by Markofrs theorem 18,
p.378]

Setting a = 1 - 1/(2n + 1) we obtain

Now the lemma follows from the inequality xZn~ 2n + 1 (k = 1, 2,... , n)
18, p. 129].

LEMMA 5. Let a E (0, /2) be given. Then for every polynomial Pm of
degree at most m the inequality

Proof First we will show that

\ ' .~ Akn IPm(xkn)1 eXZn /2 ~ const ( 1 + J:) foo
IXlml <av n -

In order to prove (4) let us note that

IPm(x)1 e- x2
/2 dx.

(4 )

Thus, by the Markoff-Stieltjes inequality

,Xk-l n -.
Akn~ I . e-t~dt

"' Xk-->-I.n

18, p. 50], we have

\ ' Akn IPm(xkn)1 eXkn /2

IXknl <crv/n

(5)

+ L Akn eXkn /2 r
Xk

l,n IP~(x)1 dx.
IXknl<.avn ~Xk-'-I,n
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Inequalities (5) and
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Xk--l,n - xk + l.n ~ canst n - ti2

[2, p. 180 I imply that

and

for IXknl~avn. Hence

\. Akn IPm(xkn)1 eXZni2

IXknl ~a\/n

Applying G. Freund's Markoff-type inequality [31 to the second integral on
the right side of (6), we immediately obtain (4). Now we will prove that
inequality (4) implies (3). Note, that in (3) we can assume without loss of
generality that m :;;;, n. Let C > 0 be an arbitrary but fixed number. Suppose
that there exists a polynomial 7rm of degree at most m such that

I
--1-1 ~ const l7rm(t)1
1+ t

for It I~ a In and

I
i7rm(t)1 ~ const --1-1

I + t

for It I~ C liii. Then by (4) and Lemma 3

(7)

(8)

with some constant C 1 > O. Now, if C is chosen so that C > Cl' then we can
apply (8) and the lemma follows. Thus the lemma will be proved if we can
construct a polynomial 7rm such that inequalities (7) and (8) hold. Since
a <12, n ~ m and the function (1 + It I) 1 is exactly of the same size as
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(1 + t 2
)-I/2, it will be enough to show that for every C> 2 there exist a

polynomial Jrm such that

(9)

for It I (: C /iii, where M] and M 2 are independent of m and t. Since the
second derivative of (I + t 2

) -1/2 in absolute value is bounded by 4, we can
apply Jackon's theorem [8, p. 61 to conclude that there exists a polynomial
Pm such that

for It I (: /iii. Therefore, if m is big enough then

for It I (: /iii, that is,

t IPm(t)1 (: (I + t 2 )-V2
(: 2IPm(t)1

Thus, if we put Jrm(t) = Pm(t/C), then 7[m satisfies (9) since for fixed values of
C the functions (I + t2

)-V2 and (1 + t 2/C2
)-1/2 are of the same size.

LEMMA 6. Let a > a be fixed and let {In} be a sequence of functions

such that fn(x) = afar Ixl (: a vn and

for x E IR. Then

( 10)

for every p > I.

Proof Applying Schwarz' inequality we obtain

Ln(fn' X)2 (: \' f~(xkn)Akn ~ 1~(X)
IXkni">"avn k~l kn

_1_ \' 1 xZn \' tzn(X)
(: 2 Akn e l'

a n k7] k71 Akn
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Hence by Lemma 4 and
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/2, p. 181 I the ineq uality

(x E iP)

holds independently of x and n. Now, if p :;:0 2, then (11) implies

( 11 )

Using the Gauss-Jacobi quadrature formula we get

I'X [LnUn,x)e x2/21 2dx= \' f~(XknPkn
0' :r !x~nj>a'v/n

Thus by Lemma 4

~CX' ~ ,J .ILnUn,x)e-XOi212dx(;constn-Ji2
-ex

(13)

which together with (12) proves (10) for p:;:O 2. Now let 1 <P < 2. First we
will show that for every fixed c > 0

.cv n

lim J ILnUn' x) e-
x2i2

I
P dx= O.

n-+if) ~ -c\n

Since p < 2, we have by Holder's inequality

cv n

r JLnUn' x) e-
x2

/2I
P dx

,; -cvin

(; [t~~ILnUn,X)e-X2i212dXr212cvnJ(2-p)/2.

Consequently by (13)

cv n

f' JLnUn' x) e- x2i2
I
P dx (; const n( I- PI!2,

.i --cvi n

(14 )
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which implies (14) for 1 <p < 2. Thus (10) will be proved for 1 <p < 2 if
we can show that for every fixed c > y'2

Using

we obtain

Ln(fn,x)2<constn-h_~(-:-) \' Aknf~(xkn) \' Aknh~-Jxkn)
X 1Xknl>avn k= I

for Ixl>cjiisince Ixkn l<y'21l+l (k=1,2, ...,n) [8, p.129). Thus by
Lemma 4

(Ixl > cin).

Integrating this inequality and applying Holder's inequality we get

which proves our assertion since 1 <p < 2.

LEMMA 7. Let {lpn} be a sequences offunctions such that /Pn(x) = 0 for
Ixl >ijii and

for x E IR. Then

for every p > 1.

(IS)
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that the inequality

I, IL( ') ,x2/21Pdx
~ nlfJn,X e

"Ixl>y'n

<constnp
/
2 [ \',.)'knihn-l(Xkn)lllfJn(Xkn)\lP

Ix,"I" 0/.)\ II J
yc Ih (x) e'

X1
/2jP

X I n dx
, x

(16 )

holds. First let us examine the expression in brackets. By Lemma 5 and (15)
we have

Applying the inequality

( 17)

[8, p. 201 J we obtain

I
"L Ihn I (x)1 e .,'/2 1;4 1\1'; 1 d

, ,. eL -'-'~l-+-"-Ix-;I~-dx ~ const n' ~ _v';; -1-+-1x-I x

+[f ~h~_I(x)eX2dx·r , o+IX\)2d) 1/2

Ixl';>y'n 'Ixl;;'yll J
~ const n" 114 log n

so that

'\' _Aknlhn_l(Xkn)llfPn(Xkn)l<constn,1/410gn. (18)
Ix,"I';' (1I2l\1 n
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Now let us estimate the integral on the right side of (16). If P > 2 then

ex; I h ( ) - x'/2 IPfyn n x : dx~const. nll-PI/2

271

(19)

since Ihn(x)le-x2/2~const for xEIP [8, p.242J. If l<p<2 then by
Holder's inequality

= const nl2-3pl/4.

We obtain from inequalities (16), (18), (19) and (20) that

which proves the lemma.

(20)

(p> 2)

(I < p < 2),

LEMMA 8. Let £ >0 be given. Let ~ 'IIn} be a sequence offunctions such
that 'IIAx) = Ofor Ixl > vn and

(21 )

for x E !R. Then

for every p > I.

Proof Let Sn(g, x) denote the nth partial sum of the Fourier expansion
of some function g in the Hermite polynomials lhd. Let G be defined by

First we will show that

ex2/2

G(x) = I I'I + x
(22)

[J~";;" ILn('IIn' x) e- x2/2I P dXJ lip

~const£· 11l~~~1 [J~:!nISn(PG,x)e-X212IPdXrP, (23)
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where 11·lIen denotes the usual ref: norm. To prove (23) let us introduce a
function gIl defined by

g"(x)=sign[L"(w,,,x)]IL,,(W,,,X)IP 1 Iv;,(x)e(IP;2)\'. (24)

where lyln(x) is the characteristic function of the intervall-VI1, ynj. Then

--
.\' n .'J

j JL"(w,,,x)e-X2i2IPdx= I L"(W,,,x)g,,(x)e x'dx.
~ ---vn ~ rf

Since L"(W,,. x) is a polynomial of degree less than n, we get

,~vn ~'X

I JL"(W,,, x) e
x2i2

IPdx = j L"(W,, , x) S"(g,,, x) e x'dx.
0-' --- V n ~ j

Note that L"(W,,, x) S"(g,,, x) is a polynomial of degree at most 2n - 1.
Thus we can apply the Gauss-Jacobi quadrature formula to obtain

.v" "I JL,,(Wn' x) e- x2;2jP dx = ~ L,,(Wn' xk,,) Sn(gn' xk,,)Ak'"
• \" k -- I

Because L IIIw", x) interpolates W" at x k ", it follows from (21) that the ine
quality

("~IL,,(w,,'X)e~X'/2IP~e \' ,S"(g",xk,,)IG(Xk,,)Ak,,
. v" 1Xknl <v"

holds where G was defined in (22). Thus by Lemma 5

.v n ,.j

j JL"(w,,,x)e-X212Ipdx~constej - IS"(g,,,x)IG(x)e x'dx. (25)
. --v" . J

Let P" be defined by

Then IIP"II"'J ~ 1 and

• (J., ., ,.ex;I IS"(g,,,x)IG(x)e~x'dx=1 g"(x)S,,(fJ,,G,x)e x2dx.
• --- • '-:1 ~

Consequently by (24)

J'" IS"(g,,, x)1 G(x) e- x
' dx

~

= ("~ signIL"(W,,,x)] L"(w,,,x)e-X2i2IP~1 IS"(fJ,,G,x)e X'ilj dx.
• \' n
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Applying Holder's inequality we obtain

~ 'iJ 2I ISn(gn' x)1 G(X) e~X dx
,; -:x.
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[
vn ](P--II/P [ vn ] lip

< LvnILn(l/In,x)e-X2/2IPdx . LvnISn(flnG,x)e~X2/2IPdX .

This inequality combined with (25) yields (23). In order to complete the
proof of the lemma we must prove that

Ills~~l [J:nISn(flG,X) e-
x2

/
2
IPdXr

p

<const (26)

independently of n. Using the Christoffel-Darboux formula 18, p. 43/ we get

Sn(flG, x) e~x2/2 = J!rhn(X) e~x2/2 fOx: hn~l(t)~(~ ~(t) e~(2 dt

_ r;; h () -x2/2 JOx hn(t) fJ(t) G(t) e- (2

\/ 22 n - 1 X e dt,
CL X - t

where the integrals are defined in the sense of Cauchy. Since x in (26) varies
between -Vii and Vii, and the Hermite polynomials satisfy (17), inequality
(26) will be proved if we show that

rif.IJ~oo hn(t)fJ~)_Gt(t)e~(2dt IP dx<constn-P/41IfJll~ (27)

for n = 1, 2,.... Let us recall that te Hilbert transform is a bounded operator
on U if 1 < p < 00 17]. Thus (27) holds if

reo Ihn(x) fJ(x) G(x) e - x21P dx < const n - P/411fJ II~,
'" -CIJ

that is,

(28)

By (17) the inequality

.vn h (x)e~X2/2IP
J_/,,' n1 +]xl dx<constn-/J/4

holds. Hence by (19) and (20) inequality (28) is satisfied.
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Proof of Theorem 1. Let c > 0 be fixed. They by (1) we can find a
polynomial P such that

eX~/2

I/(x) ~ P(x)1 ~ f:-
I + Ix

for x E P. Thus, if n ~ deg(P), then

lJ"'f 11/(x)-LnU;x)je X2i2jPdX(IP

,;;; lf
xi

11/(x)-P(x)le X
2

2j P dX( II'

+ lr [ILnU_p,x)le'2i2jl'dX~li{!

,;;; c )Ff

f (I + Ixll- P d,xTI'

+ lr' IILnU-P,x)le X
2
/2 jP dX(II. (29)

Now consider LnU - P). Let In denote the characteristic function of

I-tvn, tvnl· Then we can decompose / - Pinto

The function un satisfies the conditions of Lemmas 7 and 8. Hence

On the other hand, we can apply Lemma 6 to l'n to obtain

Thus by (30)
, ,J ( I (!

lim sup) I IILnU - P, x) e Xl/2)P dx. ~ canst E.
n -7: t~, f

Using (29) we get

lir;: .~~p Ij"x II/(x) - L nCt: x)1 e x
2!2I P dx ( II' ,;;; canst c.

Since c > 0 is arbitrary, the theorem follows.
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Proof of Theorem 2. Let Co(-2, -1) denote the space of continuous
functions on IR with support in 1-2, -11. Then Ln(f) can be considered a
linear functional on Co(-2, -1) and by conditions (2) holds for each
fE Co(-2,-I). Hence by Theorem 10.19 of [6, p.182/

~OOI ILn(f,x)IPw(x)dx~const max If(x)IP (31)
~'-(XJ 2<,x< I

for fE Co(-2, -1). Now for every n = 1,2,... let us pick up a function
gn E C()(-2, -I) such that

max Ign(x)1 = I
2<,x<, - 1

and

Then

\'

-2-<Xkn< 1

It follows from h~(x)=Vfiihn_I(X) and Ihn_I(Xkn)l~constn-1/4 for
-2 ~ x kn ~ - I 12, p. 1811 that

Ih~(xkn)I-' I ';? const n-1/4

(-2 ~xkn ~ - I)

Furthermore, we obtain from

n n
~~Xkn-Xk+l.n~.~

V 2n + I V n + I

12, p. 180] that the number of zeros of hn(x) in 1-2, -I is exactly of order
/ii. Hence

whenever x> O. Thus by (31) we can conclude that the inequality

.CfC I n
l
/
4
h (x) IP

A = lim supj n w(x) dx < 00
n·~oc ... 00 I + x

(32)

holds. Now let us fix M> O. By Fejer's asymptotic formula for the Hermite
polynomials [8, p. 2001
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(0";; X,,;; M) inequality (32) implies

[
x2/2 1P I [ 11 Plim sup (_e__ w(x) cos V2n+-Ix - mr dx,,;; const A.

n<1C. o I+x 2

Hence. if m ); p is an even integer then

lim sup jM [e
X2

/2 JP w(x)!cos(~4n+ Ix)!mdx";;constA.
n~,(.o I + x

Since (cos x)m is a trigonometric polynomial with non zero constant term,
applying the Riemann~Lebesgue lemma we obtain

rH

[ eX'/) 1P

w(x) dx ,,;; canst A.
'11 I +x

Letting M -> 00 the inequality

j' [ e
xL2

JP w(x) dx < 00
'0 I +x

follows. Similar argument can be used to prove

r~:'" P

C
J

[le_:X- J w(x)dx < 00.
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